Preventing Tailstrike During Go-around Near the Ground

The focus of this article is go-around near the ground, sometimes called, “rejected landing”. This follows our previous article: “A Focus on the Landing Flare” article published September 2020 and “A Focus on the Takeoff Rotation” published January 2021. Those articles provided recommendations for avoiding tailstrikes when performing landing flare and takeoff rotation. There is also a higher risk of tailstrike when a go-around is required near the ground. This article provides additional recommendations and observations for flight crews to help them avoid tailstrike events during this phase.

Bird or Hail Strikes on the Radome

Abnormal events such as bird strikes and hail strikes can occur at any time. When the aircraft is struck by birds or Foreign Object Debris (FOD), the correct inspection process must be followed, before the next flight, to determine if the aircraft is safe to fly.This article focuses on the effect that a bird or hail strike can have on the radome of the aircraft. It recalls the recommendations to flight and maintenance crews to ensure correct detection, reporting, and management of a bird or hail strike. It also explains why it is important to always check both the outer and inner sides of a radome after any bird or hail strike event.

Closing MEL Items: Why Sooner is Better

It is not always possible to repair a system failure before the next flight. The MEL permits the dispatch of an aircraft with inoperative equipment or functions for a limited period of time, and under specific conditions, while maintaining an acceptable level of safety. Current in-service data shows an increase in the number of requests for MEL extension indicating an increase of departures with multiple open MEL items. Even if dispatch under MEL always guarantees an acceptable level of safety, it increases the risk of exposure to multiple failures with their inherent operational consequences. This article recalls the importance of fixing MEL items at the earliest opportunity to reduce this risk of exposure to multiple failures, and provides best practices where MEL extensions are necessary to maintain the highest possible margin of safety.

Wake Vortices

All aircraft generate wake vortices, also known as wake turbulence, which continue to be evident far behind the generating aircraft. Another aircraft crossing this wake may feel a sharp and brief turbulence which can be strong under some circumstances. Let’s review the specific characteristics of wake vortices’ and how pilots should react in case of an encounter to ensure the safety of the flight.

Is it a Loss of Braking?

The LOSS OF BRAKING procedure memory items have to be applied in the extremely remote case of a failure of the braking system. In-service experience shows that inappropriate application of the LOSS OF BRAKING procedure may contribute to a risk of runway excursion. This article recalls the conditions to apply the LOSS OF BRAKING procedure and highlights the risk of confusion by the flight crew when monitoring the aircraft deceleration during landing on contaminated runway.

Inappropriate V/S Target during Autoflight Mode Reversion

Two cases of inappropriate V/S target during an autoflight reversion to V/S mode after a go-around were recently reported to Airbus. In both cases, the inappropriate V/S target resulted in a pitch down command of the autopilot with high thrust. The flight guidance used the previously selected V/S value set during the preceding ILS glide slope intercept from above as a V/S target for the mode reversion.This article describes one of these events in detail and explains the conditions that caused this autoflight behavior. It provides operational recommendations to flight crews to prevent and detect this situation. It also lists the system enhancements that were launched to avoid the use of an inappropriate V/S or FPA target during a mode reversion of the flight guidance.

Look out for Ice Ridges on the Lower Nose Fuselage

With the start of the winter season in the northern hemisphere, it is a timely reminder to re-publish this article, initially published in 2018. Ice ridges on the lower nose fuselage can cause Computed Airspeed (CAS) values delivered by the ADRs to be lower than the actual airspeed which may lead to unreliable airspeed events. This article describes the potential effect on the aircraft’s systems from the takeoff phase and how to prevent such situation.

Lightning Strikes

Each in-service aircraft is struck by lightning at least once per year, on average. Even if the level of energy of lightning strikes is high, their effects on an aircraft are limited.This article explains the lightning phenomenon and why aircraft are prone to lightning strikes. It describes how aircraft are designed to limit the effects of a lightning strike and ensure that the safety of the flight is not impaired. It also recalls several safety precautions to take in flight and on the ground, and what must be done when an aircraft is struck by lightning.

Cockpit Control Confusion

Inadvertent use of the wrong cockpit control instead of the intended control is a potential situation that pilots may encounter on any aircraft type. This kind of error can occur with even the most experienced pilots and this article explores what factors can influence and lead to this type of occurrence. The resilience of the aircraft systems to cope with such an error provides effective safety barriers to prevent serious events. The aim of this article is also to raise awareness of the potential causes and effects of cockpit control confusion incidents and provide information about best practices, which can help pilots to reduce the risks that may lead to operational and safety consequences.

Inadvertent Autopilot Engagement during Takeoff on A220 Aircraft

Several in-service events were reported to Airbus where the flight crew inadvertently selected the autopilot while attempting to engage the autothrottle during the takeoff roll. Inadvertent autopilot engagement may result in early rotation that can lead to a tail strike, inability to climb, runway overrun, or even loss of control. The purpose of this article is to describe the circumstances leading to this type of event with a case study and to provide details about the procedure updates and planned product enhancements that aim to prevent recurrence.