Let’s Use xLS

xLS is a concept that has been developed by Airbus for A320 family, A330, A350, and A380 aircraft to ease the flight crew’s task of flying all straight approaches. It is now the standard for all the newly manufactured Airbus aircraft of these types.This article describes the xLS concept, its various functions, their advantages, and why xLS has been chosen as the standard for flying straight approaches on Airbus aircraft. It addresses operational and training considerations and highlights the benefits of using xLS. It also explains how to retrofit the xLS functions to take advantage of this innovation on earlier produced aircraft.

Preventing Tailstrike During Go-around Near the Ground

The focus of this article is go-around near the ground, sometimes called, “rejected landing”. This follows our previous article: “A Focus on the Landing Flare” article published September 2020 and “A Focus on the Takeoff Rotation” published January 2021. Those articles provided recommendations for avoiding tailstrikes when performing landing flare and takeoff rotation. There is also a higher risk of tailstrike when a go-around is required near the ground. This article provides additional recommendations and observations for flight crews to help them avoid tailstrike events during this phase.

Is it a Loss of Braking?

The LOSS OF BRAKING procedure memory items have to be applied in the extremely remote case of a failure of the braking system. In-service experience shows that inappropriate application of the LOSS OF BRAKING procedure may contribute to a risk of runway excursion. This article recalls the conditions to apply the LOSS OF BRAKING procedure and highlights the risk of confusion by the flight crew when monitoring the aircraft deceleration during landing on contaminated runway.

Thrust Reverser Selection is a Decision to Stop

The SOP for landing requests that the flight crew perform a full stop landing after thrust reversers selection. However, in-service flight data analysis revealed that the equivalent of one go-around per month is performed after selection of thrust reversers. This article describes an event where the flight crew performed a go-around after they had selected thrust reversers on an A320 aircraft. The reverser on one engine remained deployed until the end of the flight. The article explains how adherence to SOPs will prevent recurrence of this kind of event and describes the product enhancements that Airbus developed as additional safety barriers.

Lining Up with the Correct Glide Slope

The Instrument Landing System (ILS) is accurate and reliable, but the ILS antenna design today causes secondary glide slopes to appear above the primary glide slope. Flight crews must be aware of this phenomenon to prevent unwanted aircraft behavior during an ILS glide slope capture.This article explains the phenomenon of secondary glide slopes and their effect on aircraft systems. It provides guidance and examples that show how flight crews can prevent capturing a secondary glide slope. It also describes the protections on Airbus aircraft that limit the effect of an unintended secondary glide slope capture on the aircraft trajectory.

A Focus on the Landing Flare

There were several cases of aircraft touching down with their nose landing gear first or hard landings reported to Airbus over the last 2 years. This article will present some key points coming from the analysis of two of these incidents and recall the operational recommendations for performing the flare phase that are key to ensuring a safe landing.

Using Aircraft as a Sensor on Contaminated Runways

In any analysis of aviation accidents, Runway Excursions (RE) are usually identified as the top cause of aircraft hull losses. Many of these accidents occur on runways where braking performance is degraded by runway surface contaminants.Airbus and its subsidiary NAVBLUE have developed a new technology to use the aircraft itself as a sensor to measure the available runway braking action, and subsequently share that data to the benefit of oncoming traffic.

Control your Speed… During Descent, Approach and Landing

This article is the conclusion of our theme of speed management during a flight, which began in Safety first Issue #18. We are entering into the descent phase. Our objective is to cover descent from cruise altitude down toward the destination airport and prepare the aircraft for its approach and landing.This article aims to highlight how the reference, limit and operating speeds are useful during descent, approach and landing. It also provides a description of the tools that are available and operational recommendations on how to manage the aircraft energy during the last phases of flight.

Lateral runway excursions upon landing

Lateral runway excursions upon landing have long been rather low on the safety issues list. With the remarkable improvements in other areas, they are getting higher up and deserve careful attention. The analysis of real cases allows for drawing interesting lessons on these events and reinforcing prevention.

Landing on contaminated runways

Landing performance is a function of the exact landing runway conditions at the time of landing. A simple statement for a more complex reality. Indeed, knowing what exact contamination is or remains on the runway at a given point in time is often challenging.