Let’s Use xLS

xLS is a concept that has been developed by Airbus for A320 family, A330, A350, and A380 aircraft to ease the flight crew’s task of flying all straight approaches. It is now the standard for all the newly manufactured Airbus aircraft of these types.This article describes the xLS concept, its various functions, their advantages, and why xLS has been chosen as the standard for flying straight approaches on Airbus aircraft. It addresses operational and training considerations and highlights the benefits of using xLS. It also explains how to retrofit the xLS functions to take advantage of this innovation on earlier produced aircraft.

Lining Up with the Correct Glide Slope

The Instrument Landing System (ILS) is accurate and reliable, but the ILS antenna design today causes secondary glide slopes to appear above the primary glide slope. Flight crews must be aware of this phenomenon to prevent unwanted aircraft behavior during an ILS glide slope capture.This article explains the phenomenon of secondary glide slopes and their effect on aircraft systems. It provides guidance and examples that show how flight crews can prevent capturing a secondary glide slope. It also describes the protections on Airbus aircraft that limit the effect of an unintended secondary glide slope capture on the aircraft trajectory.

Control your Speed… During Descent, Approach and Landing

This article is the conclusion of our theme of speed management during a flight, which began in Safety first Issue #18. We are entering into the descent phase. Our objective is to cover descent from cruise altitude down toward the destination airport and prepare the aircraft for its approach and landing.This article aims to highlight how the reference, limit and operating speeds are useful during descent, approach and landing. It also provides a description of the tools that are available and operational recommendations on how to manage the aircraft energy during the last phases of flight.

Safely Flying Non-Precision Instrument Approaches

Historically the distinction between flying ILS/MLS and non-precision approaches was very clear. However, many new kinds of instrument approaches are now available and this makes the distinction less obvious. What remains true today for any approach is that disregarding basic flying techniques and procedures reduces safety margins.This article clarifies which technologies are available to perform approaches using an Airbus aircraft. It also emphasises the safety messages that are important to remember whenever flying an approach.

Lateral runway excursions upon landing

Lateral runway excursions upon landing have long been rather low on the safety issues list. With the remarkable improvements in other areas, they are getting higher up and deserve careful attention. The analysis of real cases allows for drawing interesting lessons on these events and reinforcing prevention.

Wind shear: an invisible enemy to pilots?

Weather plays a significant role in aviation safety and is regularly cited as a contributing factor in accidents or major incidents. Wind shear in the form of microbursts particularly, can be a severe hazard to aircraft during take-off, approach and landing.

Hard Landing, a Case Study for Crews and Maintenance Personnel

In this article, Airbus would like to take you through a case study and use it to learn some lessons and share our safety first culture. The article is split into three distinct parts:The first will describe the eventThe second, targeted at flight crews, will discuss and develop the stabilization criteria and present a prevention strategy against unstable approaches. It will also insist on the need to use the appropriate level of automation at all times.The third part, targeted at maintenance personnel, will illustrate the need to always use the Aircraft Maintenance Manual (AMM) as the source document for maintenance operations.

Flying a Go-Around Managing Energy

Airbus recently performed some research on the quality of go-around execution. This involved examining nearly 500,000 approaches flown by many airlines from around the world.The results highlighted that in some cases crews are choosing not to apply the Airbus Standard Operating Procedure (SOP) for the go-around phase.Particularly when a go-around was performed above 1,200 ft, the flight crew often decided to adapt the engines thrust selection instead of setting TOGA thrust. Feedback from operators also indicates a similar tendency. As a result, Airbus received several reports of unexpected aircraft trajectories and energy management techniques during the go-around procedure.Therefore, it was decided to address these issues by:Better defining an optional thrust levers management tech-nique during the a go-around, as per Airbus SOP.Developing a “Discontinued Approach” technique that wouldallow crews to effectively “abort” the approach without selecting TOGA detent.The Flight Crew Training Manual (FCTM) and the Flight Crew Operating Manual (FCOM) were updated accordingly end 2013 (updates respectively in March and May 2014 for the A300/A310 and A380).