Non-Engagement of the Go-Around Modes in CLEAN Flaps Configuration
There were several events reported to Airbus where the go-around guidance modes did not engage when flight crews initiated a go-around. The analysis of these events indicated that the aircraft were on approach in CLEAN flaps configuration. Some of these events led to a high-energy situation toward the ground at low altitudes.This article explains why the go-around guidance modes do not engage on some aircraft if the go-around is initiated while the aircraft is in CLEAN flaps configuration. The article provides recommendations for flight crews if they face this situation. It describes the modifications that are planned to ensure that the go-around guidance modes engage when the flight crew initiates a go-around, even if the aircraft is on approach in CLEAN flaps configuration.
Use the Correct BARO Setting for Approach
Using an erroneous barometric reference setting during approach may cause the aircraft to fly lower than the published approach path, when the vertical guidance and trajectory deviations use the barometric reference. This can lead to a risk of controlled flight into terrain in poor visibility conditions or at night.This article explains the potential consequences of an erroneous barometric reference. It also provides guidance to flight crews on how to detect it, and describes the available system enhancements to alert flight crews when an erroneous BARO reference is detected.
Take Care of Your Brakes
All Brakes are subject to wear. Some brakes may also experience oxidation which can lead to brake rupture. In the case of a brake rupture or if brakes are too worn, the aircraft braking performance is reduced. This can result in a runway overrun if the full braking capacity is required such as during a rejected takeoff with an aircraft weight at or close to the maximum takeoff weight. Brake rupture can also lead to damage that can cause a brake fire due to hydraulic fluid coming into contact with hot parts.This article describes carbon wear and oxidation phenomena. It recalls the maintenance procedures used to identify worn or oxidized brakes, flight crew procedures, and good practices to prevent brake wear and oxidation.
Do not Wait to Apply the Engine Fire Procedure
Several recent engine fire events highlight the importance of timely application of the engine fire procedure. This article explains why flight crew must apply this procedure without delay. Decisive action when there is an engine fire alert may prevent further damage to the engine. This can help to ensure that a manageable fire situation does not become an uncontrolled fire with more serious consequences.
Prevention of EGT Overlimit Events
A number of engine Exhaust Gas Temperature (EGT) overlimit events at takeoff were reported to Airbus, including dual events leading to a significant increase in flight crew workload at low altitude. This article recalls the importance of monitoring the EGT margin of each engine to detect any degradation in engine performance early, and provides recommendations to Maintenance, Flight Operations, and flight crews to prevent EGT overlimit events. It also reminds us of what to do in the case of an EGT overlimit indication at takeoff.
Landing with Nosewheels at 90 degrees
In the past few years, several events occurred involving landing with the Nose Landing Gear (NLG) wheels turned to 90° from the aircraft centerline. The investigations identified the root causes, which were different for each event. Mitigating actions were developed and deployed accordingly. This article describes the outcomes of investigations into several events of aircraft landing with NLG wheels at 90° and shows why they are not related. It also recalls the corrective actions and existing operational recommendations to prevent any recurrence.
Lining Up with the Correct Glide Slope
The Instrument Landing System (ILS) is accurate and reliable, but the ILS antenna design today causes secondary glide slopes to appear above the primary glide slope. Flight crews must be aware of this phenomenon to prevent unwanted aircraft behavior during an ILS glide slope capture.This article explains the phenomenon of secondary glide slopes and their effect on aircraft systems. It provides guidance and examples that show how flight crews can prevent capturing a secondary glide slope. It also describes the protections on Airbus aircraft that limit the effect of an unintended secondary glide slope capture on the aircraft trajectory.
Training Pilots for Resilience
Resilience training is not a new concept in aviation. It was introduced in mandatory Crew Resource Management (CRM) training for pilots a few years ago. Resilience is built on a pilot’s confidence and competencies. But what if they did not fly for many weeks or months?With many aircraft returning to service following the massive fleet grounding our industry has faced as a result of the COVID-19 crisis, it is a good time to highlight the importance of resilience training.
Safe Handling of TCAS Alerts
TCAS RAs are not correctly followed in more than 40% of cases according to a recent study published by Eurocontrol, making non-compliance with TCAS RAs one of the top 5 Air Traffic Management (ATM) operational and safety risks.This article explains how the TCAS Alert Prevention (TCAP) and AP/FD TCAS functions can improve the situation by respectively reducing the number of RAs in congested airspace, and assisting flight crews to follow TCAS RAs in an optimum manner. The article also recalls the TCAS warning procedure step-by-step, with and without the AP/FD TCAS function and provides guidance for training flight crews.
System Reset: Use With Caution
A system reset is not always the quick fix that it may seem. Performing an inappropriate manual system reset in flight can seriously impair the safety of the flight. Multiple system resets on the ground without performing the necessary troubleshooting actions can also have serious consequences.This article addresses when system resets are applicable and how to perform them correctly.